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INTERACTIONS BETWEEN OCEAN
SURFACE WAVES AND CURRENTS

1. INTRODUCTION

A surface wave field may be significantly altered by interaction with currents. These currents can
be induced by many mechanisms in the ocean. A potentially important wave-current interaction results
from the interaction of ocean surface gravity waves with the wake produced by a moving object or
vessel. Visual observations suggest that in the wake behind a surface ship there exists a *dead-water”
region which is characterized by the relative absence of short wavelength waves. This region ofien
extends to very large distances behind the body. Relative to the ambient sea, the wake region appears
to be very smooth. This is further displayed by some of the synthetic aperture radar (SAR) images
made of surface ship wakes.

In this report we will evaluate a potential model to predict the far-field development of this quies-
cent region. We will consider the possibility that it is the inieraction of the ambient and Kelvin wave
fields with the momentum wake of the vessel which is responsible for the generation of this region. In
scnjunction with the conceptual model of the total wake flow field previously developed by Skop [1],
and by Cocper and Skop [2] we will assume that the leading order approximation to this interaction
problem is obtained from the interaction of the turbulent momentum wake as superimposed on an oth-
erwise quicscent background and the actual background wave field. The results of inis phase of the
study will provide some initial estimates of the effectiveness of this mechanism for the generation of
the dead water region. Since our interest is in the short waves, we will further assume that the wave-
field of interest is composed totally of short wavelength waves. The deep water dispersion relation may
be utilized throughout and the vertical variations in wake velocity may be neglected. The surface veloc-
ity field produced by the wake may then be considered as a current field in its interaction with the sur-
face waves.

Some of the earliest work on the problem of the interaction of regular, linear, surface waves and
currents is that of Longuet-Higgins and Stewart [3,4]. This work as well as other work on regular wave
interactions is summarized 1n the comprehensive review article by Peregrine [5). Peregrine [6] also
developed a2 model to estimate the overali effect of the wake velocity field of a ship upon the Kelvin
waves generated at the ship’s stern and was able to demonstrate that for a sufficiently strong "effective”
vwake, the envelope of the stern wave is significantly reduced from its ideal no:. interactive value. More
recently, Peregrice and Thomas {7] have considered the interaction for finne-amplitude symmetric
waves. The finite-amphtude wave properties are computed using the method of Longuet-Higgins [8)
for predicting the energy and wave action densities and fluxes. Studies of irregular or random wave
ficld interactions were conducted by numerous workers [9, 10, 11, 12, 13]. The work of Tayfun et al.
{10} and James et al. {11} are most relevant here as they form the basis for the work to be preseated in
this report.

Manuscript spproved January 20, 1986,
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\ I1. ANALYSIS
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A. Wake Velocity Field

3 Far downstream of the trailing edge of 2 moving object we expect the wake to possess only hor-
izontal velocity components u and v. The vertical velocity component w = 0 and the variations of u

2L )

and v will be predominantly in the transverse direction, y. Very slow variation in the downstream coor- ,}.},,‘
dinate x is sxpected relative to the y variation. We therefore consider the fundamental problem a wake raSc
velocity field given by bl
_E
‘ 3 Ve (u(y), viv) 0) 5’9
o ¢l LY
. 9 where y is transverse to the direction of motion of the body, —x. If V is to be a legitimate _;)
- Y incompressible waxe velocity field, then V - V=0 from continuity, implies that v(»)=0°* or 2L
4 5 V = (u(y), G, 0). That is, far downstream of the trailing edge the wake is expected to be described by =
- parabolic equations with a single velocity component u{y) being predominant. However, if ihe body is _
not infinite in the vertical direction or, equivalently, if there is a finite velocity component in the
vertical direction then a legitimate wake field is V = (u(y), v(»), w(y, 2)). Then, frem csuunuity,
/ v __ 3w
ay 9z’
¥
4
= 1t is expected funiner, Garrett {i4j, that in the iar wake, viu <<i. Thercfore, the simplest
interaction wake field and one whick appears to bear close connection to observation is a current profile
4 V = u(y). The effects of a finite transverse velocity component, v, will also be addressed in some of
3 this work.
! B. Wave Kincmatic Relations
In this scction we will derive the kinematic relations which ase satisfied by the individual Fourier

modes of the wave field spectrum in their interaction with the surface current. Each mode is approxi-
mated as a nearly plane, slowly varying, small amplitude wave ficld. Subsequently, the results of this

\ section will be utilized to develop the relevant equations to describe continuous :andom wave fielas
which are appropriate for real ocean waves

Consider a nearly plane, slowly varying wave field This field may be approximately described by
an amphitude function 4 (x, 1) and a phase function S(x, 1). These two funciions satisfy

d=Alx, 1) exp i(Six, 1)).

In analogy with plane waves where $ = (k - x — wf). we draw the foilowing d:finitions for wave
number and frequency

. k=VS )]

)
andw =~ a5 )

3 ar

. From Eq. (1} #e have ¥V x k = 0 and by eliminating $ from (1) and €2) we obtain

3 3% L 9u=0. 3)

] ar

3 *The scale of v 1s determined from the slow variation du/3x and is neghgible 5 lowest order
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This is the well known conservation of crests equation. To complete the description, a dispersion rela-
tion is required which also relates @ and k. For traveling waves which propagate relative to a coordi-
nate system which ts fixed in the fluid we have

o=gk). @

Here o denotes the intrins’c frequency. If the medium possesses a slowly vatying current U(x, ¢) then
with respect to a stationary coordinate system we bave

w=colk)+k-Ulx, ). (&)

If we take the time derivative of Eq. (5) we obtain

do _d0 3k 3k au

o "ok ot T VYK G ©
or from Eq. (3) we have
fo 190 Vo=k- U
ar Tlart U] Vo =k ar m
where %E- is recognized as the group celocity. That is,
= @
= 3‘]"; 8)
Equation (7) is expressed a5
%9 4 +0) Vomk- U ©®
ar * at
or
d g -8U
7 k Y (10)

whers T‘ii; represents a time derivative along rays. Equation (10) therefore indicates that the total fre-

quency w is conserved along rays for a steady curzent or when observed in a coordirate system where
the current is steady. The wake field is steady when referred to a body-fixed coordinate system. The
transformation to a body-fixed coordinate system is therefore advantageous since the total frequency o
of the waves will then be invariant during the interaction.

‘The ambient wave field also must be characterized with respect to the same body-fized coordinate
system. Consider an ambient traveling wave at a frequency w,, and wave number k., where

Vo = o (ke.) (11)

If the boly which is generating the wake is transiaiing at 2 uniform velocity U, then with respect to a
body-fixed observer the frequency would be given as

o=w,~ka-U,
o= a(ks,) ~ ke - U, (12)

and the wake velocity field U= —U, + @i where @ is thc wake field relative o a fixed observer. In
Equation (12) we have used the fact that k., is unchanged in the Galilexn transformation. The fre-
quency o given by (12) is the total frequency which is invariant through the interaction. That is, by
combining (12) and (5) for a steady wake field we obtain

wc=ollk,) k.- Uy=clki+k-U. (13)
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If we specialize 16 lmér décp Wwter waves then we ms,. write )
’ o (k) = (V2 a4
and Eq. (13) becomes

where we have taken U, in the negative x direction.

By combining Eqs. (3) and (5) and eliminating » we obtain the ray equation for the wave number

k,
8k .y 3k ay,
30 T WU+ ) 3% k Pl Qe
It is informative to examine the two component equations of Eq. (36). In the x dFrection we fave
3k, | Bk, Ak, du v
a Tt ot ) G ek Sk o (162)
-and in the y direction
% 3% 3% du _ . 8v " a6
3t + (u+c) Y + v+, 3y k, ay—k,a—y. (16%)

From Eq. (i6a) we note that for U = (u(p), v(y), w), tke right side vanishes and we have
- 0 or k, is conserved. The variation of k, is described by Eq. (16b). T3 ¢ sordunate 3 is a hor-
itontal direction transverse to the wake axis (x).

For k, = constant, the terms involving U, cancel from beth sidss of Eq. (15) and we find that
Eg. (15) provides
(k.g)V2m (kg)¥2+ k - i an

This equation indicates that the wave refraction is governed by the visccus or turbulent velocity for the
cas2 where k, = constagt. The xinematics of the refraction process are therefore governed by
(kag)V2m U2+ & it + k¥ as)

and
ke = ko, = constant. (19)

From Eq. (1%} =2 j.ave

Ky ™ Ay ™= 2y HAn 8, = ksin @

k. sin 8. cos @
k’-kcoseg..—-__:-'—__ (20)
sin@
Equation (18) provides
e
ke SiN 0, Ko sin 0.,
(k.,g)uzﬂl—wxi +l7k..sin0,,—§'—sin—ne——eoso (21)

T s AUN LGN, T O O™, T N A A A T e e o R AN R a3 o -

(@) = ke Uy = () + k- U= (k)2 — K Uy +k - a9
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where 0 represents the angle between & and the y-axis and for v > 0 we consider only &, < 0 as indi-
cated by the minus sign preceding the ¥ terms. Therefore, “ZLgog %-, k, < 0 and Eq. (21) may

2 =
be written as
sin @, v 0
1-{ - "l +sino..{u'—v"",’s } 22)
sin sin @
where
, (+3- H/ WalkD). @
If we define
sing V*
EE[sino ] s 24

then Eq. (22) may be expressed as

£ (1-sin0.u)=&—v*/1- ¢ sino... 25)

We aote that in the far field where u® and v* vanish, sin 9 — sin 6. or £ — 1. Also, in the limit
where v® — 0 we recover Eq. (2.151) of Peregrine {5] which is consistent with v= 0.

Equation (25) is valid for refraction of the wave field by a general two component current
(u(y), v(y)). In what follows, we will neglect v in comparison to u. In future work on this problem
the effects of finite v variation may be addressed. The basic problem described by Eq. (25) withv = 0
is the interaction of a wave field with a parallel surface current shear u ().

The variation of wave amplitude due to the refraction may be determined by the conservation of
wave action. For the steady case considered here this is expressed as

v- [(a tep) fl-o, 8
where £ = %pga2 represents the wave energy density fot linear waves of amplitude a, and o once
again represents the intrinsic frequency relative to the fluid. For the parallel shear flow considered,

u(y), Eq. (26) implies that

lc” ;_E—] = constant Q@n

o
[c, cos 8 f-]-c,cosﬂ[%gf}-]—oonstant.

G
For linear deep water waves ;‘_— - L, so that

2k
wE _ cos@ pga’ _ sin 6 cosfpga’
4 4 k 4k,

and therefore

.
3—%,:‘7“—2—0- = constat.

LR
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It can be seen that the wave amplitude becomes unbounded when sin 29 — 0 6r 6 — :t%-, 0. Asindi-
cated by Peregrine {5], 6 = + % correspond to a caustic where the plane-wave assumption bieaks
down. For @ = 0. wave steepness becomes unbounded. ‘ .

C. Random Ware Field

The above results and discussion have been associated with the behavior of the individual Fourier
components of a wave field. In practical problems, however, we are usually confronted by a continuous
spectrum of random waves. The refraction of wave ficlds of this type has been the subject of a great
deal of recent work [9, 10, 11, 12, 13). These random fields are typically described by the inhomo-
geneous wave number spectrat density ¢ (k; x) which is defined by

dEfpg = ¢{k; x) d’%k = (k; x) dkydky = Y kdkdd 28) -

where dE represents the wave energy at wave number k. The total energy associated with the local
mean square value of the free surface displacement is obtained by integrating dE over all of k space.
That is,
Emf f &, 0) dkydky= <> 9
) Xy
where E represents the mean square surface elevation and is defined by £ = E/pg. But the energy can
also be defined in terms of a frequency-direction spectral density & (w, 0, x) as

Emf [ 06,60 0 do ds. (0)
- &
Therefore from Eqs. (29) and (30)
vik, x)-%%’w,o; x). 6

As previously demonstrated for steady wave-current interactions, w is constant and therefore the fre-
quency direction spectral density ¢ (w, 8; x) is the more convenient variable.

From Eq. (28) we can derive the consequences of conservation of wave action (for each wavelet).
That is for
dE/pg = ¥k, x) d’k

the wave action is writien as (d%k)/o and therefore conservation of wave action demands that

2| 2 LAY .
3 o d’k]+ ax [(U,+c,,) - d?k] 0 32

It can be shown, Le Blond and Mysak [S] and James et al. [11], that
3 (%) + -2 -
3 @x) + Y (U + ¢) dk) = 0. (33)

hetd

]
A~ T

Therefore, combining this result with Eq. (32) we obtain a conservation law for the spectral action den-
sity % which is given as
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Equation (34) indicates that the spectral densily of wave action ¢/o° is conserved-along-rays. The
reader should note the difference between Eqs. (32) and (34). For steady interactions where o is also
conserved along rays it is much more convenient to study ke spectral modifications of &, the
frequency-direction spectral density. From Eq. (31) we find that

b owde® o -
pd o (w, 6; x). 35)

Therefore for steady interactions wherz « and -f— are conserved along rays, Eq. (35) implies that

. 1l do O . -
P is conserved.

. These properties were utilized by James et al. {11] in their studies of the refraction of a random
wave field by a parallel surface shear current. They included the effects of wave breaking and wave
reflection and generated the resulting mean square surface displacement given by Eqs. (29) or (30).
Their computations were for some rather drastic and hence non-physical assumptions relating (o the
ambient frequency-direction spectral density. These assumptions simplified the computations. It would
appear however, that it is possible to utilize more realistic ambient spectral densities within a similarly-
based formulation of the problem. Furthermore, it is possible to extract specific information about the
surface energy contributions from particular waveiength ranges in the interaction “ne and thereby
begin to 2ddress the question of the origins of the dead water region. Most importantly, "t is possible to
evaluate from the spectral density modifications, free surface spatial realizations correspe “ding to vari-
ous random sea state models.

The techniques developed by James et al. [11] enable the calculation of the modification of the
energy associated with the mean-square free surface elevation of the incoming wave f{ield due to the
refraction caused by a surface current. They assumed a simplified incoming spectral density distribu-
tion which was taken to be independent of frequency and direction. That is, they assumed

Goalwinide) = 1.

This approximates the incoming wave spectrum as one similar to that of white noise. In addition, all
the Kinematics of the rzfraction process were referred to the initial plare (w..,f.,) where the incoming
energy for a given wavelet is proportional to the polar area in that plz =

AE vy = By (000,00) 0 00 A3 00 B0e = o009 0e 000 (36)

when @, = 1. From Egs. (34) and (35) we can express the ratio of the local frequency-direction spec-
tral density ® to its original undisturbed value ®,, along a ray. That ratio is given by

[4]

Pwox) k%) o

P bixn) ke [gp] oo
3

A= 37

where x and x,, lie on the same wave ray. From Eq. (18), we have
w=og{k)+ & i, ™ T (38)
For linear deep water waves, o (k) = (kg)V2 . Therefore, combining Eqs. (38) and (37) we obtain

Rt 14 Koo ] Kl
Aw |k— - p = (39)
Ll 1+ Kk ity 1- ;o i
(5] @
7
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o, sitite i, =.0 by definition, we have - T~ 3
o . ) . J‘ﬂ-"i N '_ * I = . R
[ k]2 e - -0 @)
e e e R : S
Kol 11y Hali ] ,
w0

Furthermore, for the case wheze the transverse component of i is'negligible (V= 0) we find that

e >
A-{l--"f:’ﬁ'/ 1+M]. “n
U o @

Following James et al. [11] we adopt the fcllowing normalization for k and @ based upon the maximum
current, ¥, "
-t ko E
@ V. w* k y_1' k*,

and we define a velocity scale A by
ASAQ) - %L)-

As a consequence, we find from Eqs. (20) and (25) that

asxi‘n-o; - = (- Aut sino, “

Defining 7 = ©* sin @ and 5, = « * sin §,, we have

1
—7?: - (1- An.)? @)

which expresses the local wave direction in terms of the initial direction. We can also ohtain the
inverse solution by solving the quadratic for n.. This yields

1
o= =11+ 289 - VT +4A 44,
] 2A2 [ N 7)} 44)
where we have selected that root which provides n— 7., at A — 0.

In terms of the above normalization, Eq. (41) for the frequency-direction spectral density ratio
becomes

o _, (Q-aAg) )
o AT O A @s)
and if we substitute the inverse refraction Eq. (44) this ratio then becomes
JFaEg-1]' 1
"'[ 20 | JT+3Aq “6

Equations (45) and (46) are extremely useful for defining the Fourier decomposition of the surface
elevation with respect to the initial and the physical frequency-direction planes respectively.
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D. Fourier Spectrum

As discussed above, a random wave field may be characterized by means of the spectral density.
To describe the refraction of these waves by a steady current, the frequency-direction spectral density is
most convenient since the total frequency is conserved in stich an interaction as demonstrated above.
From Eq. (30) we have

dE = & (0,9;x)wdw g
where dE represents the mean square surface displacement energy contribution for the region between

@and @ + d? and w and v + dw. The total energy is obtained by integration over all directions
—zr € 8 € 7 and over all frequencies 0 € w < oo. That is, the mean-square fres surface elcvation is

<> = [ f 0@60) -t do (472)

James et al. [11] choose to define the interaction in the initial frequency-direction space (w.., 0.,) and
thersfore compute <72> as

<g>=f [ 0.4 o,.,.dm,,[%:]de. @b)

employing Eq. (45) for 4. In this work we will, at times, find it more convenient to utilizs Eq. (47a)
for <> and to evaluate A by Eq. (46), thereby evaluating the energy integral in the physicz! plane
(», 8). Eq. (47b) will be utilized to calculate of the mean-sgrare surface elevation energy while we wilt
find it more convenient to utilize Eq. (47a) in physical space to evaluate the Fourizr decomposition of
the surface elevation to be discussed below.

It therefore follows that the contribution to surface elevation cotresponding to frequencies of Aw
about w;, and directions A@ about @, is given by 19, 17, 18, 20]

Ly= \lltbzw,ﬂ,,ys w; Aw AQ -

cos{k,, (xsin0,+ycoso,)—m,1+¢,,]. (482)
of e _ 1 12
From Eqgs. (43) and (44) we have &k = k../(k./k) = i"g—[ 1 +2‘X:’ 1] . Therefore in Eq. (48) we
have )
2 2
w; [\/l +dAn -1
PR R LA NS AR Y
= 2 ] (48b)
where

7=~ wjsin 8.
and ¢; represents a randem phase shift uniformiy distributed between 0 and 2ar.

The above expressions indicate that the Fourier coefficients for the surface displacement can be
determined from the local value of the frequency-direction spectral dersity ¢ (w,8). The two expres-
sions derived for 4, Eqs. (45) and (46), representing the ratio of spectial density along a ray can be
utilized to construct the local spectral density from its initial value due to the interaction with a current
distnbution. The surface energy can be obiained by means of integration in either initial space (45) or
physical space (46). Hence, from Eq. (46) we have in physical space

o 4
<> = [ f Gulon, 0 x)[ ‘“*2‘;"7'"‘ ‘} T Mn} dwdo “9




[ 112
Vit aAy-1} 1
24y ]

cos th,lx sing, + 3 c0s8,) - w,t~o,} (50)

lw.&w.’x()

Ly = 120, @00 (0,0) ,Xe0) NErred.

where 8,, (w*, 8) 15 de ermined from Equation (44} as

{
[ Sln_!{—l——il + 2ip -1+ 4.\1)]

2 * A2y
and the fuil free surface realizauon or displacement at a g:ven ume
()t =F 3w 0.a.3) [$33)

'n Eq (51), we have evshiaed all {,, at 2 = O Equatiens 1301 end (31} form the basis of a numencal
procedure in physical space (78} to determine the surface elevation

Variovs ciitenia can be utibized fer the inclusion of wave breaking in the model The one selected
by James et al [11] represents ¢ maximurn conditon  They define the wave breaking boundary as the
conGiion that the local component of the rurren’ 1n the direction o” the wave motion 15 2qua' bui
opposite 1o the local wave group velociry  In dimension'ess terms this s equivaleat to

1

Neo =~ T (522)

or, 1n the physical plane

5= —J—l\- (520
Clearly, these condi.ons are conservative ong they are independent of the precise value of the wave
amphtude Tre wave amphitude defined by these conditions is infimte  In a continuous refraction pro-
cess, waves break we'l befcre these boundanes are reached Therefere, this represents a conservative
condiion 1n terms of the unbroken wave energy More energy is lost to wave breaking than is indi-
cated by these conditons [t may be more realistic to estabhsh the wave breaking boundary based on
the 1ocal wave steepness [19] Thus represents a ciiteria which depends both on the initial spectral dis-
tnibution ard the integrated growth of the particular spectral component. For simplicity in this paper we
will adopt the conservative cniterion estabhicshed above However, we recognize the limitations of the
condiiion and will reconsider this at a future ume

The wave-breaking boundary 15 utihized to estabhish limuts of integration for mean square surface
elevation energy <{2> or, equivalently, limits for the contributions to the Fourier coefficients for the
surface elevauon. {. Utilizing Equaiion (52b) as the definition of the wave breaking boundary (9,) we~
obiain

. 1 N
O w — ——
sin 8, = — . (53
This establishes the lower integrauon imit for 8. For waves with components in the direction of the .

current, @ > 0, interaciion with the current can produce reflected waves Waves which are about to
reflect are charactenized in the physical plane at @ = /2. In the nitial plane, these were charasterized
by lames et al. as 8, = 6,,,. Therefore the 9 limuts for incomuing waves in Eqs (49), (50) and (51) are
given as O, < 8 € /2 Oy, 15 the minimum of 8, and sin™'(=1/(} + Aw*)?) obtained from equa-
tion (42) at 6,, = % The outgoing waves can be shown to ooey the same hmiis. These are waves

originating on the other side of the wake and those which have been reflected from: regions beyond the
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point 1n question  These results may be uuhized to generate {ree surface reahzauons within the interac-
Lo ozone  Fusthermore, 1t is possible 10 evaluate other surface properues which may be important in
iterprelng observations  For example, the surface slope disiribucon which 1s important in the remote
sersing of ocean surfaces 1s expressible from a knowleage of the surface elevation Fourier decomposi~
ion

Ircluded here has been an outline of procedures to obta:n the spectral dersity distribution within
e interaction zone of a wave field and a current distnbutton and thereby to obtain the Fourier spec-
trum and a spanal reahzauon of the surface elevation This work 1S currently underway and furiher
results will be available shortly both for the simphfied, ®,, = 1, and for imore comprehensive incoming
spectra such as Pierson - Moskwitz or Jonswap {17]. More realistic &, does not greaily complicate the
procedure The basic reqinred relations have been derived v this report

E. Short Wavelength Contribution to the Surface Energy

Short of sciving for the complete Fourer spectral distiitution throughout the interaction zone we
can also chaoracterize the contnbutions from vanous ranges of wavelengths to the surface energy. This
necessitates establishing modified limits of integration foi the energy integral previously developed.
That is, we must find the locus of constant wavelength within the interaction zone 1n cither the initial
or physical plane. Equation (47a) or (47b) may then be used to calculate the surface energy contribu-
tion from the wavelength ranges of interest. We have performed this calculation in the initial plan uti-
lizing Eq. (47b). In general, there are two types of wavelenglh contours n initial space: closad and
open. The major differences in :hese cases arisz in that portion of frequency-direction space where the
waves are prepagaling agamnst the current. The evaluation of the dimensional wavelength cantour
proceeds frem Eqs. {(42) and (43). These can be combined as

k=~ —f‘i— k(= A )? (59)
]

k-f’ill—/\
&

and therefore
V, 0o

4

2
sin 0.,] . (55)
Solving for sin 6,, we obtain

Sin 0, = = sin €. (56)

AV, ve
This equation provides the vatue of 8., which produces from a frequency w,, a wave number of k at a
position ¥ where the local current 1s given by ¥, A(y), and it therefore defines the required locus 1n
the initial plane

Woo

& [En‘VE

Equation (56) can be used .v estabhish the required himits of integration for ihe surface energy as
discussed above Of course, the hmitations imposed by Eq (56) have to be incorporated *vith respect
to those limitations already associated with wave breaking, 0., 1nd wave reflection, 8., In thos> cases
where 8; from Eq. (56) for the wave number boundary are intermediate of .., and @,,, for wave
breaking and wave reflection, the wtegration 15 from 6, to 8., to charactenize contnibutions for those
wavelength smaller than 27/k only. This sort of wave length decomposition allows a partial extraction
of the spectral deasity distnbution The full procedures established above for the rumerical evaluation
of the spectral density will provide accurate esumates o° the Fourner coefficients of the free surface
elevation These modifications are now in progress and the results of this capability will be reported
svon. The remainder of this report will concentrate on the partial spectral knowledge associated with
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the k contours and ®,, (w., 8,,) = 1. That is, we will determine the surface energy contributions for
the small wavelength range. Subsequently, these computations will be repeated for more realistic
incident spectral density distnbutions.

1II. RESULTS

In this section we will discuss triefly some of the results that have been obtained from our studies
of the refraction of a random wave field by a simple surface curient shear u(y). This is expected to be
the dominant behavior of the wake velocity fieid of a surface vessel. These results have been selected
to provide some initial estimates for the effectiveness of this wave-current interaction mechanism for
the elimination of short wavelength components 1n the downstream region. Short wave components
may have their origin in the incoming wave spectrum as short waves or they may be generated from
longer wasées by the refraction of the incoming wave field. It is vseful te distinguish between and to
quantify these two origins.

Figures 1 to 4 display the variation of mean-square surface elevation energy for wavelengths less
than A, (greater than k; ) as a function of pesition within different strength parabolic wake structures.
ll:: MV, =1-(/ ym)’). Xj and A, represent wave length limits for the uniform spectral density of
the incoming waves and A, represents the maximum wavelength (minimum wave number
k;, ~ 2x/A.) which 13 included in the calculated wave field energy, E,. V,, presents the maximum of
the current velocity profile. It is sesn ffom those cases where A, < Ay < A3 OF kg > k> k; that the
short wavelength components may be crested from longer wevelengths  Also from the otner cases it is
seen that the shost wavelength components eriginally present are reduced by the refraction process.

Figure 1 shows a comparison for fixed values ¢f Az, Ay and A, of the vedation of the roct mean
square surface eneigy for wavelengths less than A; = 6.28 e produced from oncoming wavelengths
hetween 628 cm and 12.56 cm with ¢, = i for wakes with various maximum selocities. For these
cases, the short wavelength comporents must be generated by the refraction process. More energetic
short wave components are generaied for the wake with a maximum velocity of 40 cm/sec then for that
with a maximum of 30 cm/sec. Both the 30 and 40 cm/sec maxima are not strong enough to produce
any wave breaking according to the conservai’ve wave breaking criteria given by Egs. (524} and (52b).
The wakes with maximum vslocity of 100 ar . 200 cm/sec do cause wave breaking. This is seen for the
near centerline energy which ts reduced in those cases while the production of short waves at the
current structure edges is higher. Aiso included in the figure is the variation of the full energy over all
wavelengths Ey for the four maximum currents cases The strongest currents produce a larger reduc-
uon in surface mean square elevation energy. Note that in those cases where wave breaking occurs
Ep/ Egye is less than unity at the wake boundaries, ¥/ype, = 1.

The same energy variation with position in the current is shown in Fig. 2 for the cases wheie X,
1s intermediate between A and A3 and for two values of maximum current both of which do not induce
wave breaking. The belancing effects of destruction and production of short wave length components
due to refraction 15 apparent. Figure 3 shows these effects for a case where wave breaking is present.
The parameters of Fig. 3 are Ay = 6.28 cm, Ay = 628 cm and A, = 6.28 cm. The maximum current
strength is ¥,, = 70 cm/sec. The apper curve represcats the variation of the full surface energy wkile
the lower curve represents the variation of the surface energy for wavelengths less than 6 Zs ¢m. For
the majority of the structure, the short wave srergy is c~proximately one-half the full energy.

In Fig 4 we display the same variations for a maximum current strength of V,, = 20 cm/sec with
A= 828 cm and A, = Ay = 6.28 crn.  No breaking occurs for this case. The short wave length energy
does not have a depression near the maximum velocity at the centerline of the current, y = 0.
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IV. SUMMARY

A model Las been outlined in this report for characterizing the modification of an incoming ran-
dom oc=an wave field by a surface wake. At the most fundamental level, we can compute, for a white
noise-like incoming spectrum the mean square surface elevation energy and its variation throughout
the wake structure. On the next level of complication, we can subdivide the esults into various
wavelength regions and begin to describe some of the characteristics of the spectral changes. Then,
more realistic incoming spectral distributions such as Pierson-Moskowitz, Jonswap, etc. can be incor-
perated into the model. Lastly and most importantly we will be able to determine for each of the cases
above the Fourier description of the surface elevation field.

Froin the representative cases which have been considered here, it is suggested that a significant
5 reduction ie the <* ort wavelength comp of the incident wave field 1s possible from the interac-
tion between oce .1 surface waves and currents  This is particularly true for the waves with components
in the direction of the current. Thosc wave components oppositely directed to the current are reduced
in wavelength by the interaction. However, they are refracted so that they are turned away from the
cuerent direction This will show mcre clearly when we are able to determine the relative amplitudes of
the components of the frequency-direction speciral aensity. The relative absence of components with

.

" angles close 10 6 = —% (opposite to current ) may be impertant in analyzing the response of a particu-
o
s A iar remote seasing system. This Jirectiopal distributicn may be more important than the reiative popu-
e lation of short wave lengths.
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kq =0.01 cm~!
kp =050 cm—?
K =1.0em™!

(¥
]|

\\\ V= 30,40 cm/sec

SRS - //‘//

Emc

0'1 : r\m X
Ex T 200
Einc X
0.01 1
-1.0 0.0 10
Y/Ymax

Fig. 1 — Variation of normalized mean square surface displacement energy as & function of position in
a parabolic wake structure for different strength wakes, V.. E, fepresents the surface energy for
wavelengths less than Ay. Er represents ihe surface ensrgy for all wavelengths considered and Enc
tepresents the total surface energy for the in~oming spectrum. Incoming spectrum — $o =1 for
1256 cm € A < 628 cm.
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Vhﬂ:mmm\ /
— Vm =10 cm/sec
E\
Einc ky=.01 cm=1
“3 kz=u &'h_1
K =10cm—1
a4
.1
0 1
-10 0 10
¥!Ymax

Fig. 2 — Variation of normalized mean square surface displacement energy for wavelengths less
than 6.28 cm as a function of pesition in the parabolic wake structure. Incoming spectrum —
®,.=1for3.14cm € A < 628 cm.
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Fig. 4 — Variation of normalized mean square surface displacement energy as a function of
position in the parabolic wake structure for wavelengths less than 6.28 cm. Incoming spectrum
~®, =1for628cm < A £ 628 cm.
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